

Program Outline

Control Practices

Global Concepts

Run Time (h:mm:ss)

Global Concepts		11:07:36
Training Orientation		1:29:43
Excel Orientation	Explore the Excel software package	0:29:01
Minitab Orientation	Explore the Minitab software package	0:31:42
Simulator Orientation	Explore the Process Simulator	0:29:00
Breakthrough Vision		1:31:26
Deterministic Reasoning	Describe a basic cause-and-effect relationship in terms of Y=f(X)	0:52:57
Leverage Principle	Relate the principle of leverage to an improvement project	0:38:29
Process Management	Process Management	
Performance Yield	Explain why final yield is often higher than first-time yield	1:14:06
Hidden Processes	Describe the non-value added component of a process	0:40:57
Measurement Power	Describe the role of measurement in an improvement initiative	0:33:38
Establishing Baselines	Explain why performance baselines are essential to realizing improvement	0:45:52
Defect Opportunity	Understand the nature of a defect opportunity and its role in metrics reporting	1:01:18
Process Models	Define the key features of a Six Sigma performance model	1:11:11
Process Capability	Identify the primary indices of process capability	1:21:53
Design Complexity	Describe the impact of complexity on product and service quality	1:17:32

General Practices

31:52:32

Quality Tools		9:32:59
Variable Classifications	Define the various types of variables commonly encountered during quality improvement	0:08:32
Measurement Scales	Describe each of the four primary scales of measure and their relative power	0:50:01
Problem Definition	Characterize the nature of a sound problem statement	0:35:25
Focused Brainstorming	Explain how focused brainstorming is used to facilitate improvement efforts	0:11:57
Process Mapping	Understand how to define the flow of a process and map its operations	0:24:20
Performance Sampling	Explain how to design and implement a sampling plan	0:20:17
Check Sheets	Understand how check sheets can be used for purposes of data collection	0:12:59
Analytical Charts	Identify the general range of analytical charts that can be used to assess performance	0:20:02
Pareto Charts	Explain how Pareto charts can be used to isolate improvement leverage	0:24:25
Run Charts	Utilize run charts to assess and characterize time-based process data	0:10:59
Correlation Charts	Utilize a correlation chart to illustrate the association between two variables	1:01:24
Frequency Tables	Explain how to construct and interpret a frequency table	0:14:42
Performance Histograms	Construct and interpret a histogram and describe several purposes	1:14:40
Basic Probability	Understand basic probability theory and how it relates to process improvement	0:29:16

Phone: 1-800-335-6234

Web: www.SixSigmaMindPro.com Copyright 2005 Dr. Mikel J. Harry, Ltd. - All Rights Reserved.

Leading Businesses to Higher Profits

Pre-Control Charts	Describe the fundamental rules that guide the operation of a standard pre-control plan	0:41:25
Control Charts	Explain the purpose of statistical process control charts and the logic of their operation	1:41:11
Score Cards	Understand the purpose of Six Sigma score cards and how they are deployed	0:31:24
Basic Statistics		9:05:33
Performance Variables	Identify and describe the types of variables typically encountered in field work	0:10:26
Statistical Notation	Recognize and interpret the conventional forms of statistical notation	0:44:53
Performance Variation	Explain the basic nature of variation and how it can adversely impact quality	0:22:24
Normal Distribution	Describe the features and properties that are characteristic of a normal distribution	0:49:36
Distribution Analysis	Explain how to test the assumption that a set of data is normally distributed	1:21:06
Location Indices	Identify, compute, and interpret the mean, median, and mode	0:42:05
Dispersion Indices	Identify, compute, and interpret the range, variance, and standard deviation	1:16:37
Quadratic Deviations	Understand the nature of a quadratic deviation and its basic purpose	0:24:47
Variation Coefficient	Compute and interpret the coefficient of variation	0:07:17
Deviation Freedom	Explain the concept of degrees-of-freedom and how it is used in statistical work	0:29:47
Standard Transform	Describe how to transform a set of raw data into standard normal deviates	0:47:51
Standard Z-Probability	Describe how to convert a standard normal deviate into its corresponding probability	0:40:58
Central Limit	Understand that the distribution of sampling averages follows a normal distribution	0:17:29
Standard Error	Recognize that the dispersion of sampling averages is described by the standard error	0:13:32
Student's Distribution	Understand that the T distribution applies when sampling is less than infinite	0:06:07
Standard T-Probability	Describe how to convert a T value into its corresponding probability	0:15:26
Statistics Simulation	Employ basic statistics to analyze data generated by the process simulator	0:15:12
Continuous Capability		8:32:11

() MindPro

Performance Specifications	Explain the basic nature and purpose of performance specification limits	0:14:39
Rational Subgrouping	Explain how to form rational subgroups and describe their purpose in Six Sigma work	1:19:00
Capability Study	Understand the concept of process capability and how it applies to products and services	1:32:55
Instantaneous Capability	Understand the concept of instantaneous capability in relation to Six Sigma work	0:47:58
Longitudinal Capability	Understand the concept of longitudinal capability in relation to Six Sigma work	0:47:30
Cp Index	Compute and interpret Cp	0:11:57
Cpk Index	Compute and interpret Cpk	0:19:53
Pp Index	Compute and interpret Pp	0:13:41
Ppk Index	Compute and interpret Ppk	0:24:10
Process Shifting	Understand the impact of process centering error on short-term capability	0:29:10
Process Qualification	Determine the required level of short-term capability necessary to qualify a process	1:39:20
ConcaP Simulation	Apply continuous indices of capability to the process simulator	0:31:58
Discrete Capability		4:41:49
Defect Metrics	Identify and describe the defect metrics commonly used in Six Sigma work	0:11:26
Defect Opportunities	Understand the nature and purpose of defect opportunities in terms of quality reporting	0:43:08
Binomial Distribution	Describe the features and properties that are characteristic of a binomial distribution	0:59:19
Poisson Distribution	Describe the features and properties that are characteristic of the Poisson distribution	0:39:31
Throughput Yield	Compute and interpret throughput yield in the context of Six Sigma work	0:08:53

Compute and interpret rolled-throughput yield in the context of Six Sigma work

Convert yield and defect metrics to the sigma scale of measure

Apply discrete indices of capability to the process simulator

Phone: 1-800-335-6234

Rolled Yield

Metrics Conversion

DiscaP Simulation

0:20:42

1:32:19

0:06:31

Technical Practices

() MindPro

14:32:42

Hypothesis Testing		6:05:49
Statistical Inferences	Explain the concept of a statistical inference and its primary benefits	0:23:00
Statistical Questions	Explain the nature and purpose of a statistical question	0:20:35
Statistical Problems	Understand why practical problems must be translated into statistical problems	0:10:43
Null Hypotheses	Define the nature and role of null hypotheses when making process improvements	0:31:29
Alternate Hypotheses	Define the nature and role of alternate hypotheses when making process improvements	0:18:03
Statistical Significance	Explain the concept of statistical significance versus practical significance	0:56:05
Alpha Risk	Explain the concept of alpha risk in terms of the alternate hypothesis	0:24:18
Beta Risk	Define the meaning of beta risk and how it relates to test sensitivity	0:38:41
Criterion Differences	Explain the role of a criterion difference when testing hypotheses	0:15:49
Decision Scenarios	Develop a scenario that exemplifies the use of hypothesis testing	0:17:09
Sample Size	Define the statistical elements that must be considered when computing sample size	1:49:57
Confidence Intervals		2:47:17
Mean Distribution	Comprehend and characterize the distribution of sampling averages	0:04:21
Mean Interval	Compute and interpret the confidence interval of a mean	0:54:29
Variance Distribution	Comprehend and characterize the distribution of sampling variances	0:21:10
Variance Interval	Compute and interpret the confidence interval of a variance	0:35:52
Proportion Distribution	Comprehend and characterize the distribution of sampling proportions	0:07:22
Proportion Interval	Compute and interpret the confidence interval of a proportion	0:27:02
Frequency Interval	Describe how frequency of defects is related to confidence intervals	0:17:01
Control Methods		4:23:52
Statistical Control	Explain the meaning of statistical control in terms of random variation	0:31:37
Control Logic	Explain the logic that underpins the application of a control chart	0:16:21
Control Limits	Reconcile the difference between specification limits and control limits	0:25:34
Chart Selection	Explain how to rationally select a control chart	0:08:07
Chart Interpretation	Interpret an SPC chart in terms of its control limits	0:30:30
Zone Testing	Explain the concept of zone tests and their application to SPC charts	0:43:18
Variables Chart	Characterize the role and purpose of a variables chart	0:08:38
Attribute Chart	Characterize the role and purpose of an attribute chart	0:04:37
Individuals Chart	Construct and interpret an individuals control chart	0:09:58
IMR Chart	Construct and interpret an individual moving range control chart	0:09:01
Xbar Chart	Construct and interpret a control chart for subgroup averages	0:06:33
Range Chart	Construct and interpret a control chart for subgroup ranges	0:10:27
Proportion Chart	Construct and interpret a control chart for sampling proportions	0:11:15
Defect Chart	Construct and interpret a control chart for defect occurrences	0:13:09
Other Charts	Describe several other types of control charts used in Six Sigma work	0:02:00
Capability Studies	Explain the role of capability studies when making process improvements	0:22:00
Control Simulation	Apply common SPC methods to the process simulator	0:10:47
Measurement Analysis		1:15:44
Measurement Uncertainty	Understand the concept of measurement uncertainty	0:15:43
Measurement Components	Describe the components of measurement error and their consequential impact	0:15:42
Measurement Studies	Explain how a measurement systems analysis is designed and conducted	0:44:19

Total Video Run Time 57:32:50