

Program Outline

Diagnostic	Practices
------------	------------------

Run Time (h:mm:ss)

Global Concepts		11:07:36
Training Orientation		1:29:43
Excel Orientation	Explore the Excel software package	0:29:01
Minitab Orientation	Explore the Minitab software package	0:31:42
Simulator Orientation	Explore the Process Simulator	0:29:00
Breakthrough Vision		1:31:26
Deterministic Reasoning	Describe a basic cause-and-effect relationship in terms of Y=f(X)	0:52:57
Leverage Principle	Relate the principle of leverage to an improvement project	0:38:29
Process Management		8:06:27
Performance Yield	Explain why final yield is often higher than first-time yield	1:14:06
Hidden Processes	Describe the non-value added component of a process	0:40:57
Measurement Power	Describe the role of measurement in an improvement initiative	0:33:38
Establishing Baselines	Explain why performance baselines are essential to realizing improvement	0:45:52
Defect Opportunity	Understand the nature of a defect opportunity and its role in metrics reporting	1:01:18
Process Models	Define the key features of a Six Sigma performance model	1:11:11
Process Capability	Identify the primary indices of process capability	1:21:53
Design Complexity	Describe the impact of complexity on product and service quality	1:17:32
General Practices		22:18:51
Quality Tools		13:13:18
Variable Classifications	Define the various types of variables commonly encountered during quality improvement	0:08:32
Measurement Scales	Describe each of the four primary scales of measure and their relative power	0:50:01
Problem Definition	Characterize the nature of a sound problem statement	0:35:25
Focused Brainstorming	Explain how focused brainstorming is used to facilitate improvement efforts	0:11:57
Process Mapping	Understand how to define the flow of a process and map its operations	0:24:20
SIPOC Diagram	Describe the nature and purpose of an SIPOC diagram	0:08:26
Force-Field Analysis	Utilize force field analysis to solve problems	0:14:49
Matrix Analysis	Understand how matrices are created and used to facilitate problem solving	0:16:56
C&E Analysis	Explain how C&E matrices can be used to solve quality problems	0:06:02
Failure Mode Analysis	Understand how FMEA is used to realize process and design improvements	0:11:18
Performance Sampling	Explain how to design and implement a sampling plan	0:20:17
Check Sheets	Understand how check sheets can be used for purposes of data collection	0:12:59

		0.20.02
Analytical Charts	Identify the general range of analytical charts that can be used to assess performance	0:20:02
Pareto Charts	Explain how Pareto charts can be used to isolate improvement leverage	0:24:25
Run Charts	Utilize run charts to assess and characterize time-based process data	0:10:59
Multi-Vari Charts	Define the major families of variation and how they can be graphed	0:49:29
Correlation Charts	Utilize a correlation chart to illustrate the association between two variables	1:01:24
Frequency Tables	Explain how to construct and interpret a frequency table	0:14:42
Performance Histogram	s Construct and interpret a histogram and describe several purposes	1:14:40
Basic Probability	Understand basic probability theory and how it relates to process improvement	0:29:16
Pre-Control Charts	Describe the fundamental rules that guide the operation of a standard pre-control plan	0:41:25
Control Charts	Explain the purpose of statistical process control charts and the logic of their operation	1:41:11
Score Cards	Understand the purpose of Six Sigma score cards and how they are deployed	0:31:24
Search Patterns	Explain how the use of designed experiments can facilitate problem solving	0:32:13
Concept Integration	Understand how to sequence a given selection of quality tools to better solve problems	1:02:54
Quality Simulation	Employ the related quality tools to analyze data generated by the process simulator	0:18:12
Basic Statistics		9:05:33
Performance Variables	Identify and describe the types of variables typically encountered in field work	0:10:26
Statistical Notation	Recognize and interpret the conventional forms of statistical notation	0:44:53
Performance Variation	Explain the basic nature of variation and how it can adversely impact quality	0:22:24
Normal Distribution	Describe the features and properties that are characteristic of a normal distribution	0:49:36
Distribution Analysis	Explain how to test the assumption that a set of data is normally distributed	1:21:06
Location Indices	Identify, compute, and interpret the mean, median, and mode	0:42:05
Dispersion Indices	Identify, compute, and interpret the range, variance, and standard deviation	1:16:37
Quadratic Deviations	Understand the nature of a quadratic deviation and its basic purpose	0:24:47
Variation Coefficient	Compute and interpret the coefficient of variation	0:07:17
Deviation Freedom	Explain the concept of degrees-of-freedom and how it is used in statistical work	0:29:47
Standard Transform	Describe how to transform a set of raw data into standard normal deviates	0:47:51
Standard Z-Probability	Describe how to convert a standard normal deviate into its corresponding probability	0:40:58
Central Limit	Understand that the distribution of sampling averages follows a normal distribution	0:17:29
Standard Error	Recognize that the dispersion of sampling averages is described by the standard error	0:13:32
Student's Distribution	Understand that the T distribution applies when sampling is less than infinite	0:06:07
Standard T-Probability	Describe how to convert a T value into its corresponding probability	0:15:26
Statistics Simulation	Employ basic statistics to analyze data generated by the process simulator	0:15:12
	, , ,	
Technical Practice	s	25:49:13
Hypothesis Testing		6:05:49
Statistical Inferences	Explain the concept of a statistical inference and its primary benefits	0:23:00
Statistical Questions	Explain the nature and purpose of a statistical question	0:20:35
Statistical Problems	Understand why practical problems must be translated into statistical problems	0:10:43
Null Hypotheses	Define the nature and role of null hypotheses when making process improvements	0:31:29
Alternate Hypotheses	Define the nature and role of alternate hypotheses when making process improvements	0:18:03
Statistical Significance	Explain the concept of statistical significance versus practical significance	0:56:05
Alpha Risk	Explain the concept of alpha risk in terms of the alternate hypothesis	0:24:18
Beta Risk	Define the meaning of beta risk and how it relates to test sensitivity	0:38:41
Criterion Differences	Explain the role of a criterion difference when testing hypotheses	0:15:49
Decision Scenarios	Develop a scenario that exemplifies the use of hypothesis testing	0:17:09
Sample Size	Define the statistical elements that must be considered when computing sample size	1:49:57

Phone: 1-800-335-6234

onfidence Intervals		2:47:′
Mean Distribution	Comprehend and characterize the distribution of sampling averages	0:04:2
Mean Interval	Compute and interpret the confidence interval of a mean	0:54:2
Variance Distribution	Comprehend and characterize the distribution of sampling variances	0:21:
Variance Interval	Compute and interpret the confidence interval of a variance	0:35:
Proportion Distribution	Comprehend and characterize the distribution of sampling proportions	0:07:2
Proportion Interval	Compute and interpret the confidence interval of a proportion	0:27:0
Frequency Interval	Describe how frequency of defects is related to confidence intervals	0:17:0
arametric Methods		8:19:
Mean Differences	Determine if two means are statistically different from each other	1:37:
Variance Differences	Determine if two variances are statistically different from each other	0:39:
Variation Total	Compute and interpret the total sums-of-squares	0:16:
Variation Within	Compute and interpret the within-group sums-of-squares	0:10:
Variation Between	Compute and interpret the between-group sums-of-squares	0:11:
Variation Analysis	Explain how the analysis of variances can reveal mean differences	0:32:
One-Way ANOVA	Construct and interpret a one-way analysis-of-variance table	1:16:
Two-Way ANOVA	Construct and interpret a two-way analysis-of-variance table	0:20:
N-Way ANOVA	Construct and interpret an N-way analysis-of-variance table	0:12:
ANOVA Graphs	Construct and interpret a main effects plot as well as an interaction plot	0:37
Linear Regression	Conduct a linear regression and construct an appropriate model	1:17:
Multiple Regression	Conduct a multiple regression and construct an appropriate model	0:15
Residual Analysis	Compute and analyze the residuals resulting from a simple regression	0:18
Parametric Simulation	Apply general regression methods to the process simulator	0:31:
hi-Square Methods		3:18:
Statistical Definition	Describe how to translate a practical problem into a statistical problem	0:31:
Model Fitting	Explain what is meant by the term "Model Fitting" and discuss its practical role in Six Sigma work	0:58:
Testing Independence	Explain how a test of independence can be related to the idea of correlation	1:01:
Contingency Coefficients	Understand how a contingency coefficient relates to a cross-tabulation table	0:12
Yates Correction	Describe the role of Yates correction in terms of the chi-square statistic	0:07
Testing Proportions	Test the significance of two proportions using the Chi-square statistic	0:27
urvey Methods		2:41:
Research Design	Explain how the idea of research design fit with the idea of problem Solving	0:12
Information Sources	Explain how the idea of research design fit with the idea of problem Solving	0:09
Questionnaire Construction	Describe the role of survey demographics when analyzing closed-form survey data	0:19
Formulating Questions	Identify several things that should be avoided when developing survey questions	0:15
Question Quality	Explain what is meant by the term "question quality" and how this idea relates to data analysis	0:07
Sampling Plans	Describe several different types of sampling plans commonly used in survey research	0:07
Data Analysis	Explain how categorical survey data can be analyzed to establish strength of association	1:30
onparametric Methods		1:19:
Nonparametric Concepts	Explain the difference between parametric and nonparametric methods	0:06
,	,	
Median Test	Execute a median test on two groups and then determine if the difference is statistically significant	0:48:
Median Test Runs Test	Execute a median test on two groups and then determine if the difference is statistically significant Conduct a runs test to determine if a time series pattern is random	0:48: 0:08:

Measurement Analysis		1:15:44
Measurement Uncertainty	Understand the concept of measurement uncertainty	0:15:43
Measurement Components	Describe the components of measurement error and their consequential impact	0:15:42
Measurement Studies	Explain how a measurement systems analysis is designed and conducted	0:44:19

Total Video Run Time 59:15:40