

Program Outline

Experimental Practices

Global Concepts

Run Time (h:mm:ss)

Slobal Concepts		11:07:36
Training Orientation		1:29:43
Excel Orientation	Explore the Excel software package	0:29:01
Minitab Orientation	Explore the Minitab software package	0:31:42
Simulator Orientation	Explore the Process Simulator	0:29:00
Breakthrough Vision		1:31:26
Deterministic Reasoning	Describe a basic cause-and-effect relationship in terms of Y=f(X)	0:52:57
Leverage Principle	Relate the principle of leverage to an improvement project	0:38:29
Process Management		8:06:27
Performance Yield	Explain why final yield is often higher than first-time yield	1:14:06
Hidden Processes	Describe the non-value added component of a process	0:40:57
Measurement Power	Describe the role of measurement in an improvement initiative	0:33:38
Establishing Baselines	Explain why performance baselines are essential to realizing improvement	0:45:52
Defect Opportunity	Understand the nature of a defect opportunity and its role in metrics reporting	1:01:18
Process Models	Define the key features of a Six Sigma performance model	1:11:11
Process Capability	Identify the primary indices of process capability	1:21:53
Design Complexity	Describe the impact of complexity on product and service quality	1:17:32

General Practices

17:36:29

Quality Tools		8:30:56
Variable Classifications	Define the various types of variables commonly encountered during quality improvement	0:08:32
Measurement Scales	Describe each of the four primary scales of measure and their relative power	0:50:01
Problem Definition	Characterize the nature of a sound problem statement	0:35:25
Focused Brainstorming	Explain how focused brainstorming is used to facilitate improvement efforts	0:11:57
Matrix Analysis	Understand how matrices are created and used to facilitate problem solving	0:16:56
C&E Analysis	Explain how C&E matrices can be used to solve quality problems	0:06:02
Performance Sampling	Explain how to design and implement a sampling plan	0:20:17
Check Sheets	Understand how check sheets can be used for purposes of data collection	0:12:59
Analytical Charts	Identify the general range of analytical charts that can be used to assess performance	0:20:02
Pareto Charts	Explain how Pareto charts can be used to isolate improvement leverage	0:24:25
Run Charts	Utilize run charts to assess and characterize time-based process data	0:10:59
Correlation Charts	Utilize a correlation chart to illustrate the association between two variables	1:01:24
Frequency Tables	Explain how to construct and interpret a frequency table	0:14:42
Performance Histograms	Construct and interpret a histogram and describe several purposes	1:14:40

Phone: 1-800-335-6234

Web: www.SixSigmaMindPro.com Copyright 2005 Dr. Mikel J. Harry, Ltd. - All Rights Reserved.

Leading Businesses to Higher Profits

Basic Probability	Understand basic probability theory and how it relates to process improvement	0:29:16
Search Patterns	Explain how the use of designed experiments can facilitate problem solving	0:32:13
Concept Integration	Understand how to sequence a given selection of quality tools to better solve problems	1:02:54
Quality Simulation	Employ the related quality tools to analyze data generated by the process simulator	0:18:12
Basic Statistics		9:05:33
Performance Variables	Identify and describe the types of variables typically encountered in field work	0:10:26
Statistical Notation	Recognize and interpret the conventional forms of statistical notation	0:44:53
Performance Variation	Explain the basic nature of variation and how it can adversely impact quality	0:22:24
Normal Distribution	Describe the features and properties that are characteristic of a normal distribution	0:49:36
Distribution Analysis	Explain how to test the assumption that a set of data is normally distributed	1:21:06
Location Indices	Identify, compute, and interpret the mean, median, and mode	0:42:05
Dispersion Indices	Identify, compute, and interpret the range, variance, and standard deviation	1:16:37
Quadratic Deviations	Understand the nature of a quadratic deviation and its basic purpose	0:24:47
Variation Coefficient	Compute and interpret the coefficient of variation	0:07:17
Deviation Freedom	Explain the concept of degrees-of-freedom and how it is used in statistical work	0:29:47
Standard Transform	Describe how to transform a set of raw data into standard normal deviates	0:47:51
Standard Z-Probability	Describe how to convert a standard normal deviate into its corresponding probability	0:40:58
Central Limit	Understand that the distribution of sampling averages follows a normal distribution	0:17:29
Standard Error	Recognize that the dispersion of sampling averages is described by the standard error	0:13:32
Student's Distribution	Understand that the T distribution applies when sampling is less than infinite	0:06:07
Standard T-Probability	Describe how to convert a T value into its corresponding probability	0:15:26
Statistics Simulation	Employ basic statistics to analyze data generated by the process simulator	0:15:12

Technical Practices

() MindPro

28:58:34

Hypothesis Testing		6:05:49
Statistical Inferences	Explain the concept of a statistical inference and its primary benefits	0:23:00
Statistical Questions	Explain the nature and purpose of a statistical question	0:20:35
Statistical Problems	Understand why practical problems must be translated into statistical problems	0:10:43
Null Hypotheses	Define the nature and role of null hypotheses when making process improvements	0:31:29
Alternate Hypotheses	Define the nature and role of alternate hypotheses when making process improvements	0:18:03
Statistical Significance	Explain the concept of statistical significance versus practical significance	0:56:05
Alpha Risk	Explain the concept of alpha risk in terms of the alternate hypothesis	0:24:18
Beta Risk	Define the meaning of beta risk and how it relates to test sensitivity	0:38:41
Criterion Differences	Explain the role of a criterion difference when testing hypotheses	0:15:49
Decision Scenarios	Develop a scenario that exemplifies the use of hypothesis testing	0:17:09
Sample Size	Define the statistical elements that must be considered when computing sample size	1:49:57
Confidence Intervals		2:47:17
Mean Distribution	Comprehend and characterize the distribution of sampling averages	0:04:21
Mean Interval	Compute and interpret the confidence interval of a mean	0:54:29
Variance Distribution	Comprehend and characterize the distribution of sampling variances	0:21:10
Variance Interval	Compute and interpret the confidence interval of a variance	0:35:52
Proportion Distribution	Comprehend and characterize the distribution of sampling proportions	0:07:22
Proportion Interval	Compute and interpret the confidence interval of a proportion	0:27:02

Describe how frequency of defects is related to confidence intervals

Frequency Interval

0:17:01

8:19:55

10:29:49

Parametric Methods

Experimental Methods

() MindPro

Mean Differences	Determine if two means are statistically different from each other	1:37:53
Variance Differences	Determine if two variances are statistically different from each other	0:39:34
Variation Total	Compute and interpret the total sums-of-squares	0:16:36
Variation Within	Compute and interpret the within-group sums-of-squares	0:10:53
Variation Between	Compute and interpret the between-group sums-of-squares	0:11:47
Variation Analysis	Explain how the analysis of variances can reveal mean differences	0:32:21
One-Way ANOVA	Construct and interpret a one-way analysis-of-variance table	1:16:36
Two-Way ANOVA	Construct and interpret a two-way analysis-of-variance table	0:20:05
N-Way ANOVA	Construct and interpret an N-way analysis-of-variance table	0:12:49
ANOVA Graphs	Construct and interpret a main effects plot as well as an interaction plot	0:37:24
Linear Regression	Conduct a linear regression and construct an appropriate model	1:17:34
Multiple Regression	Conduct a multiple regression and construct an appropriate model	0:15:59
Residual Analysis	Compute and analyze the residuals resulting from a simple regression	0:18:46
Parametric Simulation	Apply general regression methods to the process simulator	0:31:38

Design Principles	Understand the principles of experiment design and analysis	0:43:05
Design Models	Describe the various types of designed experiments and their applications	0:13:18
Experimental Strateg	ies Outline a strategy for designing and analyzing a statistical experiment	0:21:14
Experimental Effects	Define the various types of experimental effects and how they impact decisions	0:24:26
One-Factor Two Lev	el Configure and analyze a one-factor two-level statistically based experiment	0:38:35
One-Factor Multi Lev	el Configure and analyze a one-factor multi-level statistically based experiment	0:11:09
Full Factorials	Understand the nature and underlying logic of full factorial experiments	0:19:46
Two-Factor Two Lev	els Configure and analyze a two-factor two-level statistically based experiment	2:13:26
Two-Factor Multi Lev	el Configure and analyze a two-factor multi-level statistically based experiment	0:04:29
Three-Factor Two Le	vel Configure and analyze a three-factor two-level statistically based experiment	0:51:20
Planning Experiment	s Understand the planning and implementation considerations related to statistical experiments	0:29:17
Fractional Factorials	Understand the nature and underlying logic of fractional factorial experiments	1:16:46
Four-Factor Half-Fra	ction Configure and analyze a four-factor half-fraction statistically based experiment	0:15:46
Five-Factor Half-Fra	tion Configure and analyze a five-factor half-fraction statistically based experiment	0:30:29
Screening Designs	Understand how to select, implement, and analyze a screening experiment	0:16:28
Robust Designs	Explain the purpose of robust design and define several practical usages	1:12:35
Experiment Simulation	Describe how a DOE can be employed when measurement data is not available	0:27:40
Measurement Ana	Ilysis	1:15:44
Measurement Uncer	ainty Understand the concept of measurement uncertainty	0:15:43

Understand the concept of measurement uncertainty	0:15:43
Describe the components of measurement error and their consequential impact	0:15:42
Explain how a measurement systems analysis is designed and conducted	0:44:19

Total Video Run Time 57:42:39

Measurement Components

Measurement Studies